Course Content
1.
Accuracy Score
0 min
2 min
0
2.
Activation Function
0 min
2 min
0
3.
Algorithm
0 min
2 min
0
4.
Assignment Operator (Python)
0 min
2 min
0
5.
Artificial General Intelligence (AGI)
0 min
3 min
0
6.
Artificial Intelligence
0 min
4 min
0
7.
Artificial Narrow Intelligence (ANI)
0 min
3 min
0
8.
Artificial Neural Network (ANN)
0 min
2 min
0
9.
Backpropagation
0 min
2 min
0
10.
Bias
0 min
2 min
0
11.
Bias-Variance Tradeoff
0 min
2 min
0
12.
Big Data
0 min
2 min
0
13.
Business Analyst (BA)
0 min
2 min
0
14.
Business Analytics (BA)
0 min
2 min
0
15.
Business Intelligence (BI)
0 min
1 min
0
16.
Categorical Variable
0 min
1 min
0
17.
Clustering
0 min
2 min
0
18.
Command Line
0 min
1 min
0
19.
Computer Vision
0 min
2 min
0
20.
Continuous Variable
0 min
1 min
0
21.
Cost Function
0 min
2 min
0
22.
Cross-Validation
0 min
2 min
0
23.
Data Analysis
0 min
7 min
0
24.
Data Analyst
0 min
4 min
0
25.
Data Science
0 min
1 min
0
26.
Data Scientist
0 min
6 min
0
27.
Early Stopping
0 min
2 min
0
28.
Exploratory Data Analysis (EDA)
0 min
2 min
0
29.
False Negative
0 min
1 min
0
30.
False Positive
0 min
1 min
0
31.
Google Colaboratory
0 min
2 min
0
32.
Gradient Descent
0 min
2 min
0
33.
Hidden Layer
0 min
2 min
0
34.
Hyperparameter
0 min
2 min
0
35.
Image Recognition
0 min
2 min
0
36.
Imputation
0 min
2 min
0
37.
K-fold Cross Validation
0 min
2 min
0
38.
K-Means Clustering
0 min
2 min
0
39.
Linear Regression
0 min
2 min
0
40.
Logistic Regression
0 min
1 min
0
41.
Machine Learning Engineer (MLE)
0 min
5 min
0
42.
Mean
0 min
2 min
0
43.
Neural Network
0 min
2 min
0
44.
Notebook
0 min
3 min
0
45.
One-Hot Encoding
0 min
2 min
0
46.
Operand
0 min
1 min
0
47.
Operator (Python)
0 min
1 min
0
48.
Print Function (Python)
0 min
1 min
0
49.
Python
0 min
5 min
0
50.
Quantile
0 min
1 min
0
51.
Quartile
0 min
1 min
0
52.
Random Forest
0 min
2 min
0
53.
Recall
0 min
2 min
0
54.
Scalar
0 min
2 min
0
55.
Snake Case
0 min
1 min
0
56.
T-distribution
0 min
2 min
0
57.
T-test
0 min
2 min
0
58.
Tableau
0 min
2 min
0
59.
Target
0 min
1 min
0
60.
Tensor
0 min
2 min
0
61.
Tensor Processing Unit (TPU)
0 min
2 min
0
62.
TensorBoard
0 min
2 min
0
63.
TensorFlow
0 min
2 min
0
64.
Test Loss
0 min
2 min
0
65.
Time Series
0 min
2 min
0
66.
Time Series Data
0 min
2 min
0
67.
Test Set
0 min
2 min
0
68.
Tokenization
0 min
2 min
0
69.
Train Test Split
0 min
2 min
0
70.
Training Loss
0 min
2 min
0
71.
Training Set
0 min
2 min
0
72.
Transfer Learning
0 min
2 min
0
73.
True Negative (TN)
0 min
1 min
0
74.
True Positive (TP)
0 min
1 min
0
75.
Type I Error
0 min
2 min
0
76.
Type II Error
0 min
2 min
0
77.
Underfitting
0 min
2 min
0
78.
Undersampling
0 min
2 min
0
79.
Univariate Analysis
0 min
2 min
0
80.
Unstructured Data
0 min
2 min
0
81.
Unsupervised Learning
0 min
2 min
0
82.
Validation
0 min
2 min
0
83.
Validation Loss
0 min
1 min
0
84.
Vanishing Gradient Problem
0 min
2 min
0
85.
Validation Set
0 min
2 min
0
86.
Variable (Python)
0 min
1 min
0
87.
Variable Importances
0 min
2 min
0
88.
Variance
0 min
2 min
0
89.
Variational Autoencoder (VAE)
0 min
2 min
0
90.
Weight
0 min
1 min
0
91.
Word Embedding
0 min
2 min
0
92.
X Variable
0 min
2 min
0
93.
Y Variable
0 min
2 min
0
94.
Z-Score
0 min
1 min
0
- Save
- Run All Cells
- Clear All Output
- Runtime
- Download
- Difficulty Rating
Loading Runtime
Linear regression is a fundamental statistical method used for modeling the relationship between a dependent variable (often denoted as 'y') and one or more independent variables (often denoted as 'x'). It assumes a linear relationship between the variables, aiming to find the best-fitting linear equation that describes the relationship between the input variables and the target variable.
The basic form of a linear regression model for a single independent variable (simple linear regression) can be represented as:
y = β _0 + β _1*x + ϵ
Where:
-
y
represents the dependent variable or the target variable being predicted. -
x
represents the independent variable or predictor variable. -
β _0
is the intercept, which represents the value of y when x is zero. -
β _1
is the slope or coefficient of the independent variable, indicating the change in y for a unit change in x. -
ϵ
denotes the error term, representing the variability or noise in the relationship not explained by the model. In multiple linear regression, where there are multiple independent variables, the equation extends to accommodate these variables:
y = β _0 + β _1*x_1 + β _2*x_2 + ... + β _n*x_n + ϵ
The primary goal of linear regression is to estimate the values of the coefficients β _0
, β _1
, ... , β _n
that minimize the sum of squared differences between the predicted values and the actual values (the least squares method). This estimation is usually done using optimization techniques to find the best-fitting line or hyperplane in higher dimensions.
Linear regression is used in various fields, including economics, finance, social sciences, and machine learning, for tasks such as prediction, forecasting, and understanding the relationships between variables. It's a foundational technique that forms the basis for more advanced regression and predictive modeling methods.